Systematic Study of a Library of PDMAEMA-Based, Superparamagnetic Nano-Stars for the Transfection of CHO-K1 Cells
نویسندگان
چکیده
The introduction of the DNA into mammalian cells remains a challenge in gene delivery, particularly in vivo. Viral vectors are unmatched in their efficiency for gene delivery, but may trigger immune responses and cause severe side-reactions. Non-viral vectors are much less efficient. Recently, our group has suggested that a star-shaped structure improves and even transforms the gene delivery capability of synthetic polycations. In this contribution, this effect was systematically studied using a library of highly homogeneous, paramagnetic nano-star polycations with varied arm lengths and grafting densities. Gene delivery was conducted in CHO-K1 cells, using a plasmid encoding a green fluorescent reporter protein. Transfection efficiencies and cytotoxicities varied systematically with the nano-star architecture. The arm density was particularly important, with values of approximately 0.06 arms/nm2 yielding the best results. In addition, a certain fraction of the cells became magnetic during transfection. The gene delivery potential of a nano-star and its ability to render the cells magnetic did not have any correlations. End-capping the polycation arms with di(ethylene glycol) methyl ether methacrylate (PDEGMA) significantly improved serum compatibility under transfection conditions; such nano-stars are potential candidates for future in vivo testing.
منابع مشابه
Promoter, transgene, and cell line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars
Non-viral transfection protocols are typically optimized using standard cells and reporter proteins, potentially underestimating cellular or transgene effects. Here such effects were studied for two human (Jurkat, HEK-293) and two rodent (CHO-K1, L929) cell lines and three fluorescent reporter proteins. Expression of the enhanced green fluorescent protein (EGFP) was studied under the control of...
متن کاملDual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation.
We present the synthesis of dual-responsive (pH and temperature) magnetic core-shell nanoparticles utilizing the grafting-from approach. First, oleic acid stabilized superparamagnetic maghemite (γ-Fe(2)O(3)) nanoparticles (NPs), prepared by thermal decomposition of iron pentacarbonyl, were surface-functionalized with ATRP initiating sites bearing a dopamine anchor group via ligand exchange. Sub...
متن کاملRadio-adaptive response of peripheral blood lymphocytes following bystander effects induced by preirradiated CHO-K1 cells using the micronucleus assay
Background: Radio-adaptive response and bystander effects are known phenomena occurring in cells following exposure to ionizing radiation (IR). In this study we examined possible radio-adaptation of lymphocytes following bystander effects induced by CHO-K1 cells. Materials and Methods: Whole blood and CHO-K1 cells were cultured in RPMI-1640 complete medium. Cells were separately irradiated with...
متن کاملInfluence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells
Genetic modification (“transfection”) of mammalian cells using non-viral, synthetic agents such as polycations, is still a challenge. Polyplex formation between the DNA and the polycation is a decisive step in such experiments. Star-shaped polycations have been proposed as superior transfection agents, yet have never before been compared side-by-side, e.g., in view of structural effects. Herein...
متن کاملCloning and Expression of Recombinant Human Interleukin-7 in Chinese Hamster Ovary (CHO) Cells
Background: The critical role of interleukin-7 (IL-7) in homeostatic proliferation and T cell survival has made it a promising cytokine for the treatment of various clinical conditions, especially those associated with lymphopenia. Methods: In the present study we expressed recombinant human interleukin-7 (rhIL-7) in Chinese hamster ovary (CHO)-K1 cells. CHO-K1 cells were stably transfected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017